请选择 进入手机版 | 继续访问电脑版

默认
打赏 发表评论 1
想开发IM:买成品怕坑?租第3方怕贵?找开源自已撸?尽量别走弯路了... 找站长给点建议
NIO框架详解:Netty的高性能之道

一、概述


1.1 惊人的性能数据


最近一个圈内朋友通过私信告诉我,通过使用Netty4 + Thrift压缩二进制编解码技术,他们实现了10W TPS(1K的复杂POJO对象)的跨节点远程服务调用。相比于传统基于Java序列化+BIO(同步阻塞IO)的通信框架,性能提升了8倍多。

事实上,我对这个数据并不感到惊讶,根据我5年多的NIO编程经验,通过选择合适的NIO框架,加上高性能的压缩二进制编解码技术,精心的设计Reactor线程模型,达到上述性能指标是完全有可能的。

下面我们就一起来看下Netty是如何支持10W TPS的跨节点远程服务调用的,在正式开始讲解之前,我们先简单介绍下Netty。

1.2 Netty基础入门


Netty是一个高性能、异步事件驱动的NIO框架,它提供了对TCP、UDP和文件传输的支持,作为一个异步NIO框架,Netty的所有IO操作都是异步非阻塞的,通过Future-Listener机制,用户可以方便的主动获取或者通过通知机制获得IO操作结果。

作为当前最流行的NIO框架,Netty在互联网领域、大数据分布式计算领域、游戏行业、通信行业等获得了广泛的应用,一些业界著名的开源组件也基于Netty的NIO框架构建。

二、RPC调用的性能模型分析


2.1 传统RPC调用性能差的三宗罪


1网络传输方式问题


传统的RPC框架或者基于RMI等方式的远程服务(过程)调用采用了同步阻塞IO,当客户端的并发压力或者网络时延增大之后,同步阻塞IO会由于频繁的wait导致IO线程经常性的阻塞,由于线程无法高效的工作,IO处理能力自然下降。

下面,我们通过BIO通信模型图看下BIO通信的弊端:
1.png

采用BIO通信模型的服务端,通常由一个独立的Acceptor线程负责监听客户端的连接,接收到客户端连接之后为客户端连接创建一个新的线程处理请求消息,处理完成之后,返回应答消息给客户端,线程销毁,这就是典型的一请求一应答模型。该架构最大的问题就是不具备弹性伸缩能力,当并发访问量增加后,服务端的线程个数和并发访问数成线性正比,由于线程是JAVA虚拟机非常宝贵的系统资源,当线程数膨胀之后,系统的性能急剧下降,随着并发量的继续增加,可能会发生句柄溢出、线程堆栈溢出等问题,并导致服务器最终宕机。

2序列化方式问题


Java序列化存在如下几个典型问题:

  • Java序列化机制是Java内部的一种对象编解码技术,无法跨语言使用;例如对于异构系统之间的对接,Java序列化后的码流需要能够通过其它语言反序列化成原始对象(副本),目前很难支持;
  • 相比于其它开源的序列化框架,Java序列化后的码流太大,无论是网络传输还是持久化到磁盘,都会导致额外的资源占用;
  • 序列化性能差(CPU资源占用高)。

3线程模型问题


由于采用同步阻塞IO,这会导致每个TCP连接都占用1个线程,由于线程资源是JVM虚拟机非常宝贵的资源,当IO读写阻塞导致线程无法及时释放时,会导致系统性能急剧下降,严重的甚至会导致虚拟机无法创建新的线程。

2.2 高性能的三个主题


1)传输:
用什么样的通道将数据发送给对方,BIO、NIO或者AIO,IO模型在很大程度上决定了框架的性能。

2)协议:
采用什么样的通信协议,HTTP或者内部私有协议。协议的选择不同,性能模型也不同。相比于公有协议,内部私有协议的性能通常可以被设计的更优。

3)线程:
数据报如何读取?读取之后的编解码在哪个线程进行,编解码后的消息如何派发,Reactor线程模型的不同,对性能的影响也非常大。

RPC调用性能三要素:
2.png

三、Netty的高性能之道详解

3.1 异步非阻塞通信


在IO编程过程中,当需要同时处理多个客户端接入请求时,可以利用多线程或者IO多路复用技术进行处理。IO多路复用技术通过把多个IO的阻塞复用到同一个select的阻塞上,从而使得系统在单线程的情况下可以同时处理多个客户端请求。与传统的多线程/多进程模型比,I/O多路复用的最大优势是系统开销小,系统不需要创建新的额外进程或者线程,也不需要维护这些进程和线程的运行,降低了系统的维护工作量,节省了系统资源。

JDK1.4提供了对非阻塞IO(NIO)的支持,JDK1.5_update10版本使用epoll替代了传统的select/poll,极大的提升了NIO通信的性能。

JDK NIO通信模型如下所示:
3.png

与Socket类和ServerSocket类相对应,NIO也提供了SocketChannel和ServerSocketChannel两种不同的套接字通道实现。这两种新增的通道都支持阻塞和非阻塞两种模式。阻塞模式使用非常简单,但是性能和可靠性都不好,非阻塞模式正好相反。开发人员一般可以根据自己的需要来选择合适的模式,一般来说,低负载、低并发的应用程序可以选择同步阻塞IO以降低编程复杂度。但是对于高负载、高并发的网络应用,需要使用NIO的非阻塞模式进行开发。

Netty架构按照Reactor模式设计和实现,它的服务端通信序列图如下:
4.png

客户端通信序列图如下:
5.png

Netty的IO线程NioEventLoop由于聚合了多路复用器Selector,可以同时并发处理成百上千个客户端Channel,由于读写操作都是非阻塞的,这就可以充分提升IO线程的运行效率,避免由于频繁IO阻塞导致的线程挂起。另外,由于Netty采用了异步通信模式,一个IO线程可以并发处理N个客户端连接和读写操作,这从根本上解决了传统同步阻塞IO一连接一线程模型,架构的性能、弹性伸缩能力和可靠性都得到了极大的提升。

3.2 零拷贝


很多用户都听说过Netty具有“零拷贝”功能,但是具体体现在哪里又说不清楚,本小节就详细对Netty的“零拷贝”功能进行讲解。

Netty的“零拷贝”主要体现在如下三个方面:
  • Netty的接收和发送ByteBuffer采用DIRECT BUFFERS,使用堆外直接内存进行Socket读写,不需要进行字节缓冲区的二次拷贝。如果使用传统的堆内存(HEAP BUFFERS)进行Socket读写,JVM会将堆内存Buffer拷贝一份到直接内存中,然后才写入Socket中。相比于堆外直接内存,消息在发送过程中多了一次缓冲区的内存拷贝。
  • Netty提供了组合Buffer对象,可以聚合多个ByteBuffer对象,用户可以像操作一个Buffer那样方便的对组合Buffer进行操作,避免了传统通过内存拷贝的方式将几个小Buffer合并成一个大的Buffer。
  • Netty的文件传输采用了transferTo方法,它可以直接将文件缓冲区的数据发送到目标Channel,避免了传统通过循环write方式导致的内存拷贝问题。

下面,我们对上述三种“零拷贝”进行说明,先看Netty 接收Buffer的创建(异步消息读取“零拷贝”):
6.png

每循环读取一次消息,就通过ByteBufAllocator的ioBuffer方法获取ByteBuf对象,下面继续看它的接口定义。

ByteBufAllocator 通过ioBuffer分配堆外内存:
7.png

当进行Socket IO读写的时候,为了避免从堆内存拷贝一份副本到直接内存,Netty的ByteBuf分配器直接创建非堆内存避免缓冲区的二次拷贝,通过“零拷贝”来提升读写性能。

下面我们继续看第二种“零拷贝”的实现CompositeByteBuf,它对外将多个ByteBuf封装成一个ByteBuf,对外提供统一封装后的ByteBuf接口,它的类定义如下(CompositeByteBuf类继承关系):
8.png

通过继承关系我们可以看出CompositeByteBuf实际就是个ByteBuf的包装器,它将多个ByteBuf组合成一个集合,然后对外提供统一的ByteBuf接口,相关定义如下(CompositeByteBuf类定义):
9.png

添加ByteBuf,不需要做内存拷贝,相关代码如下(新增ByteBuf的“零拷贝”):
10.png

最后,我们看下文件传输的“零拷贝”:
11.png

Netty文件传输DefaultFileRegion通过transferTo方法将文件发送到目标Channel中,下面重点看FileChannel的transferTo方法,它的API DOC说明如下:
12.png

对于很多操作系统它直接将文件缓冲区的内容发送到目标Channel中,而不需要通过拷贝的方式,这是一种更加高效的传输方式,它实现了文件传输的“零拷贝”。

3.3 内存池


随着JVM虚拟机和JIT即时编译技术的发展,对象的分配和回收是个非常轻量级的工作。但是对于缓冲区Buffer,情况却稍有不同,特别是对于堆外直接内存的分配和回收,是一件耗时的操作。为了尽量重用缓冲区,Netty提供了基于内存池的缓冲区重用机制。下面我们一起看下Netty ByteBuf的实现:
1.png

Netty提供了多种内存管理策略,通过在启动辅助类中配置相关参数,可以实现差异化的定制。下面通过性能测试,我们看下基于内存池循环利用的ByteBuf和普通ByteBuf的性能差异。

用例一,使用内存池分配器创建直接内存缓冲区:
2.png

用例二,使用非堆内存分配器创建的直接内存缓冲区:
3.png

各执行300万次,性能对比结果如下所示:
4.png

性能测试表明,采用内存池的ByteBuf相比于朝生夕灭的ByteBuf,性能高23倍左右(性能数据与使用场景强相关)。

下面我们一起简单分析下Netty内存池的内存分配:
5.png

继续看newDirectBuffer方法,我们发现它是一个抽象方法,由AbstractByteBufAllocator的子类负责具体实现,代码如下:
6.png

代码跳转到PooledByteBufAllocator的newDirectBuffer方法,从Cache中获取内存区域PoolArena,调用它的allocate方法进行内存分配:
7.png

PoolArena的allocate方法如下:
8.png

我们重点分析newByteBuf的实现,它同样是个抽象方法,由子类DirectArena和HeapArena来实现不同类型的缓冲区分配,由于测试用例使用的是堆外内存:
9.png

因此重点分析DirectArena的实现:如果没有开启使用sun的unsafe,则:
10.png

执行PooledDirectByteBuf的newInstance方法,代码如下:
11.png

通过RECYCLER的get方法循环使用ByteBuf对象,如果是非内存池实现,则直接创建一个新的ByteBuf对象。从缓冲池中获取ByteBuf之后,调用AbstractReferenceCountedByteBuf的setRefCnt方法设置引用计数器,用于对象的引用计数和内存回收(类似JVM垃圾回收机制)。

3.4 高效的Reactor线程模型


常用的Reactor线程模型有三种,分别如下:
  • Reactor单线程模型;
  • Reactor多线程模型;
  • 主从Reactor多线程模型。

Reactor单线程模型,指的是所有的IO操作都在同一个NIO线程上面完成,NIO线程的职责如下:
  • 作为NIO服务端,接收客户端的TCP连接;
  • 作为NIO客户端,向服务端发起TCP连接;
  • 读取通信对端的请求或者应答消息;
  • 向通信对端发送消息请求或者应答消息。

Reactor单线程模型示意图如下所示:
1.png

由于Reactor模式使用的是异步非阻塞IO,所有的IO操作都不会导致阻塞,理论上一个线程可以独立处理所有IO相关的操作。从架构层面看,一个NIO线程确实可以完成其承担的职责。例如,通过Acceptor接收客户端的TCP连接请求消息,链路建立成功之后,通过Dispatch将对应的ByteBuffer派发到指定的Handler上进行消息解码。用户Handler可以通过NIO线程将消息发送给客户端。

对于一些小容量应用场景,可以使用单线程模型。但是对于高负载、大并发的应用却不合适,主要原因如下:
  • 一个NIO线程同时处理成百上千的链路,性能上无法支撑,即便NIO线程的CPU负荷达到100%,也无法满足海量消息的编码、解码、读取和发送;
  • 当NIO线程负载过重之后,处理速度将变慢,这会导致大量客户端连接超时,超时之后往往会进行重发,这更加重了NIO线程的负载,最终会导致大量消息积压和处理超时,NIO线程会成为系统的性能瓶颈;
  • 可靠性问题:一旦NIO线程意外跑飞,或者进入死循环,会导致整个系统通信模块不可用,不能接收和处理外部消息,造成节点故障。

为了解决这些问题,演进出了Reactor多线程模型,下面我们一起学习下Reactor多线程模型。

Rector多线程模型与单线程模型最大的区别就是有一组NIO线程处理IO操作,它的原理图如下:
3.png

Reactor多线程模型的特点:
  • 有专门一个NIO线程-Acceptor线程用于监听服务端,接收客户端的TCP连接请求;
  • 网络IO操作-读、写等由一个NIO线程池负责,线程池可以采用标准的JDK线程池实现,它包含一个任务队列和N个可用的线程,由这些NIO线程负责消息的读取、解码、编码和发送;
  • 1个NIO线程可以同时处理N条链路,但是1个链路只对应1个NIO线程,防止发生并发操作问题。

在绝大多数场景下,Reactor多线程模型都可以满足性能需求;但是,在极特殊应用场景中,一个NIO线程负责监听和处理所有的客户端连接可能会存在性能问题。例如百万客户端并发连接,或者服务端需要对客户端的握手消息进行安全认证,认证本身非常损耗性能。在这类场景下,单独一个Acceptor线程可能会存在性能不足问题,为了解决性能问题,产生了第三种Reactor线程模型-主从Reactor多线程模型。

主从Reactor线程模型的特点是:服务端用于接收客户端连接的不再是个1个单独的NIO线程,而是一个独立的NIO线程池。Acceptor接收到客户端TCP连接请求处理完成后(可能包含接入认证等),将新创建的SocketChannel注册到IO线程池(sub reactor线程池)的某个IO线程上,由它负责SocketChannel的读写和编解码工作。Acceptor线程池仅仅只用于客户端的登陆、握手和安全认证,一旦链路建立成功,就将链路注册到后端subReactor线程池的IO线程上,由IO线程负责后续的IO操作。

它的线程模型如下图所示:
4.png

利用主从NIO线程模型,可以解决1个服务端监听线程无法有效处理所有客户端连接的性能不足问题。因此,在Netty的官方demo中,推荐使用该线程模型。

事实上,Netty的线程模型并非固定不变,通过在启动辅助类中创建不同的EventLoopGroup实例并通过适当的参数配置,就可以支持上述三种Reactor线程模型。正是因为Netty 对Reactor线程模型的支持提供了灵活的定制能力,所以可以满足不同业务场景的性能诉求。

3.5 无锁化的串行设计理念


在大多数场景下,并行多线程处理可以提升系统的并发性能。但是,如果对于共享资源的并发访问处理不当,会带来严重的锁竞争,这最终会导致性能的下降。为了尽可能的避免锁竞争带来的性能损耗,可以通过串行化设计,即消息的处理尽可能在同一个线程内完成,期间不进行线程切换,这样就避免了多线程竞争和同步锁。

为了尽可能提升性能,Netty采用了串行无锁化设计,在IO线程内部进行串行操作,避免多线程竞争导致的性能下降。表面上看,串行化设计似乎CPU利用率不高,并发程度不够。但是,通过调整NIO线程池的线程参数,可以同时启动多个串行化的线程并行运行,这种局部无锁化的串行线程设计相比一个队列-多个工作线程模型性能更优。

Netty的串行化设计工作原理图如下:
5.png

Netty的NioEventLoop读取到消息之后,直接调用ChannelPipeline的fireChannelRead(Object msg),只要用户不主动切换线程,一直会由NioEventLoop调用到用户的Handler,期间不进行线程切换,这种串行化处理方式避免了多线程操作导致的锁的竞争,从性能角度看是最优的。

3.6 高效的并发编程


Netty的高效并发编程主要体现在如下几点:
  • volatile的大量、正确使用;
  • CAS和原子类的广泛使用;
  • 线程安全容器的使用;
  • 通过读写锁提升并发性能。

如果大家想了解Netty高效并发编程的细节,可以阅读之前我在微博分享的《多线程并发编程在 Netty 中的应用分析》,在这篇文章中对Netty的多线程技巧和应用进行了详细的介绍和分析。

3.7 高性能的序列化框架


影响序列化性能的关键因素总结如下:
  • 序列化后的码流大小(网络带宽的占用);
  • 序列化&反序列化的性能(CPU资源占用);
  • 是否支持跨语言(异构系统的对接和开发语言切换)。

Netty默认提供了对Google Protobuf的支持,通过扩展Netty的编解码接口,用户可以实现其它的高性能序列化框架,例如Thrift的压缩二进制编解码框架。

下面我们一起看下不同序列化&反序列化框架序列化后的字节数组对比:
6.png

从上图可以看出,Protobuf序列化后的码流只有Java序列化的1/4左右。正是由于Java原生序列化性能表现太差,才催生出了各种高性能的开源序列化技术和框架(性能差只是其中的一个原因,还有跨语言、IDL定义等其它因素)。

3.8 灵活的TCP参数配置能力


合理设置TCP参数在某些场景下对于性能的提升可以起到显著的效果,例如SO_RCVBUF和SO_SNDBUF。如果设置不当,对性能的影响是非常大的。

下面我们总结下对性能影响比较大的几个配置项:
  • SO_RCVBUF和SO_SNDBUF:通常建议值为128K或者256K;
  • SO_TCPNODELAY:NAGLE算法通过将缓冲区内的小封包自动相连,组成较大的封包,阻止大量小封包的发送阻塞网络,从而提高网络应用效率。但是对于时延敏感的应用场景需要关闭该优化算法;
  • 软中断:如果Linux内核版本支持RPS(2.6.35以上版本),开启RPS后可以实现软中断,提升网络吞吐量。RPS根据数据包的源地址,目的地址以及目的和源端口,计算出一个hash值,然后根据这个hash值来选择软中断运行的cpu,从上层来看,也就是说将每个连接和cpu绑定,并通过这个hash值,来均衡软中断在多个cpu上,提升网络并行处理性能。

Netty在启动辅助类中可以灵活的配置TCP参数,满足不同的用户场景。相关配置接口定义如下:
7.png

四、本文小结


通过对Netty的架构和性能模型进行分析,我们发现Netty架构的高性能是被精心设计和实现的,得益于高质量的架构和代码,Netty支持10W TPS的跨节点服务调用并不是件十分困难的事情。

五、 作者简介


a.jpg 李林锋

2007年毕业于东北大学,2008年进入华为公司从事高性能通信软件的设
计和开发工作,有6年NIO设计和开发经验,精通Netty、Mina等NIO框架。
Netty中国社区创始人,《Netty权威指南》作者。
联系方式:新浪微博 Nettying 微信:Nettying。

附录:更多精编资料汇总


[1] 网络编程基础资料:
TCP/IP详解 - 第11章·UDP:用户数据报协议
TCP/IP详解 - 第17章·TCP:传输控制协议
TCP/IP详解 - 第18章·TCP连接的建立与终止
TCP/IP详解 - 第21章·TCP的超时与重传
技术往事:改变世界的TCP/IP协议(珍贵多图、手机慎点)
通俗易懂-深入理解TCP协议(上):理论基础
通俗易懂-深入理解TCP协议(下):RTT、滑动窗口、拥塞处理
理论经典:TCP协议的3次握手与4次挥手过程详解
理论联系实际:Wireshark抓包分析TCP 3次握手、4次挥手过程
计算机网络通讯协议关系图(中文珍藏版)
UDP中一个包的大小最大能多大?
P2P技术详解(一):NAT详解——详细原理、P2P简介
P2P技术详解(二):P2P中的NAT穿越(打洞)方案详解
P2P技术详解(三):P2P技术之STUN、TURN、ICE详解
通俗易懂:快速理解P2P技术中的NAT穿透原理
高性能网络编程(一):单台服务器并发TCP连接数到底可以有多少
高性能网络编程(二):上一个10年,著名的C10K并发连接问题
高性能网络编程(三):下一个10年,是时候考虑C10M并发问题了
高性能网络编程(四):从C10K到C10M高性能网络应用的理论探索
不为人知的网络编程(一):浅析TCP协议中的疑难杂症(上篇)
不为人知的网络编程(二):浅析TCP协议中的疑难杂症(下篇)
不为人知的网络编程(三):关闭TCP连接时为什么会TIME_WAIT、CLOSE_WAIT
不为人知的网络编程(四):深入研究分析TCP的异常关闭
不为人知的网络编程(五):UDP的连接性和负载均衡
不为人知的网络编程(六):深入地理解UDP协议并用好它
网络编程懒人入门(一):快速理解网络通信协议(上篇)
网络编程懒人入门(二):快速理解网络通信协议(下篇)
网络编程懒人入门(三):快速理解TCP协议一篇就够
网络编程懒人入门(四):快速理解TCP和UDP的差异
Netty干货分享:京东京麦的生产级TCP网关技术实践总结
>> 更多同类文章 ……

[2] NIO异步网络编程资料:
Java新一代网络编程模型AIO原理及Linux系统AIO介绍
有关“为何选择Netty”的11个疑问及解答
开源NIO框架八卦——到底是先有MINA还是先有Netty?
选Netty还是Mina:深入研究与对比(一)
选Netty还是Mina:深入研究与对比(二)
NIO框架入门(一):服务端基于Netty4的UDP双向通信Demo演示
NIO框架入门(二):服务端基于MINA2的UDP双向通信Demo演示
NIO框架入门(三):iOS与MINA2、Netty4的跨平台UDP双向通信实战
NIO框架入门(四):Android与MINA2、Netty4的跨平台UDP双向通信实战
Netty 4.x学习(一):ByteBuf详解
Netty 4.x学习(二):Channel和Pipeline详解
Netty 4.x学习(三):线程模型详解
Apache Mina框架高级篇(一):IoFilter详解
Apache Mina框架高级篇(二):IoHandler详解
MINA2 线程原理总结(含简单测试实例)
Apache MINA2.0 开发指南(中文版)[附件下载]
MINA、Netty的源代码(在线阅读版)已整理发布
解决MINA数据传输中TCP的粘包、缺包问题(有源码)
解决Mina中多个同类型Filter实例共存的问题
实践总结:Netty3.x升级Netty4.x遇到的那些坑(线程篇)
实践总结:Netty3.x VS Netty4.x的线程模型
详解Netty的安全性:原理介绍、代码演示(上篇)
详解Netty的安全性:原理介绍、代码演示(下篇)
详解Netty的优雅退出机制和原理
NIO框架详解:Netty的高性能之道
Twitter:如何使用Netty 4来减少JVM的GC开销(译文)
绝对干货:基于Netty实现海量接入的推送服务技术要点
Netty干货分享:京东京麦的生产级TCP网关技术实践总结
>> 更多同类文章 ……

[3] 有关IM/推送的通信格式、协议的选择:
简述传输层协议TCP和UDP的区别
为什么QQ用的是UDP协议而不是TCP协议?
移动端即时通讯协议选择:UDP还是TCP?
如何选择即时通讯应用的数据传输格式
强列建议将Protobuf作为你的即时通讯应用数据传输格式
全方位评测:Protobuf性能到底有没有比JSON快5倍?
移动端IM开发需要面对的技术问题(含通信协议选择)
简述移动端IM开发的那些坑:架构设计、通信协议和客户端
理论联系实际:一套典型的IM通信协议设计详解
58到家实时消息系统的协议设计等技术实践分享
详解如何在NodeJS中使用Google的Protobuf
>> 更多同类文章 ……

[4] 有关IM/推送的心跳保活处理:
应用保活终极总结(一):Android6.0以下的双进程守护保活实践
应用保活终极总结(二):Android6.0及以上的保活实践(进程防杀篇)
应用保活终极总结(三):Android6.0及以上的保活实践(被杀复活篇)
Android进程保活详解:一篇文章解决你的所有疑问
Android端消息推送总结:实现原理、心跳保活、遇到的问题等
深入的聊聊Android消息推送这件小事
为何基于TCP协议的移动端IM仍然需要心跳保活机制?
微信团队原创分享:Android版微信后台保活实战分享(进程保活篇)
微信团队原创分享:Android版微信后台保活实战分享(网络保活篇)
移动端IM实践:实现Android版微信的智能心跳机制
移动端IM实践:WhatsApp、Line、微信的心跳策略分析
>> 更多同类文章 ……

[5] 有关WEB端即时通讯开发:
新手入门贴:史上最全Web端即时通讯技术原理详解
Web端即时通讯技术盘点:短轮询、Comet、Websocket、SSE
SSE技术详解:一种全新的HTML5服务器推送事件技术
Comet技术详解:基于HTTP长连接的Web端实时通信技术
新手快速入门:WebSocket简明教程
WebSocket详解(一):初步认识WebSocket技术
WebSocket详解(二):技术原理、代码演示和应用案例
WebSocket详解(三):深入WebSocket通信协议细节
socket.io实现消息推送的一点实践及思路
LinkedIn的Web端即时通讯实践:实现单机几十万条长连接
Web端即时通讯技术的发展与WebSocket、Socket.io的技术实践
Web端即时通讯安全:跨站点WebSocket劫持漏洞详解(含示例代码)
开源框架Pomelo实践:搭建Web端高性能分布式IM聊天服务器
使用WebSocket和SSE技术实现Web端消息推送
详解Web端通信方式的演进:从Ajax、JSONP 到 SSE、Websocket
>> 更多同类文章 ……

[6] 有关IM架构设计:
浅谈IM系统的架构设计
简述移动端IM开发的那些坑:架构设计、通信协议和客户端
一套海量在线用户的移动端IM架构设计实践分享(含详细图文)
一套原创分布式即时通讯(IM)系统理论架构方案
从零到卓越:京东客服即时通讯系统的技术架构演进历程
蘑菇街即时通讯/IM服务器开发之架构选择
腾讯QQ1.4亿在线用户的技术挑战和架构演进之路PPT
微信后台基于时间序的海量数据冷热分级架构设计实践
微信技术总监谈架构:微信之道——大道至简(演讲全文)
如何解读《微信技术总监谈架构:微信之道——大道至简》
快速裂变:见证微信强大后台架构从0到1的演进历程(一)
17年的实践:腾讯海量产品的技术方法论
移动端IM中大规模群消息的推送如何保证效率、实时性?
现代IM系统中聊天消息的同步和存储方案探讨
>> 更多同类文章 ……

[7] 有关IM安全的文章:
即时通讯安全篇(一):正确地理解和使用Android端加密算法
即时通讯安全篇(二):探讨组合加密算法在IM中的应用
即时通讯安全篇(三):常用加解密算法与通讯安全讲解
即时通讯安全篇(四):实例分析Android中密钥硬编码的风险
即时通讯安全篇(五):对称加密技术在Android平台上的应用实践
即时通讯安全篇(六):非对称加密技术的原理与应用实践
传输层安全协议SSL/TLS的Java平台实现简介和Demo演示
理论联系实际:一套典型的IM通信协议设计详解(含安全层设计)
微信新一代通信安全解决方案:基于TLS1.3的MMTLS详解
来自阿里OpenIM:打造安全可靠即时通讯服务的技术实践分享
简述实时音视频聊天中端到端加密(E2EE)的工作原理
移动端安全通信的利器——端到端加密(E2EE)技术详解
Web端即时通讯安全:跨站点WebSocket劫持漏洞详解(含示例代码)
通俗易懂:一篇掌握即时通讯的消息传输安全原理
>> 更多同类文章 ……

[8] 有关实时音视频开发:
专访微信视频技术负责人:微信实时视频聊天技术的演进
即时通讯音视频开发(一):视频编解码之理论概述
即时通讯音视频开发(二):视频编解码之数字视频介绍
即时通讯音视频开发(三):视频编解码之编码基础
即时通讯音视频开发(四):视频编解码之预测技术介绍
即时通讯音视频开发(五):认识主流视频编码技术H.264
即时通讯音视频开发(六):如何开始音频编解码技术的学习
即时通讯音视频开发(七):音频基础及编码原理入门
即时通讯音视频开发(八):常见的实时语音通讯编码标准
即时通讯音视频开发(九):实时语音通讯的回音及回音消除概述
即时通讯音视频开发(十):实时语音通讯的回音消除技术详解
即时通讯音视频开发(十一):实时语音通讯丢包补偿技术详解
即时通讯音视频开发(十二):多人实时音视频聊天架构探讨
即时通讯音视频开发(十三):实时视频编码H.264的特点与优势
即时通讯音视频开发(十四):实时音视频数据传输协议介绍
即时通讯音视频开发(十五):聊聊P2P与实时音视频的应用情况
即时通讯音视频开发(十六):移动端实时音视频开发的几个建议
即时通讯音视频开发(十七):视频编码H.264、VP8的前世今生
实时语音聊天中的音频处理与编码压缩技术简述
网易视频云技术分享:音频处理与压缩技术快速入门
学习RFC3550:RTP/RTCP实时传输协议基础知识
简述开源实时音视频技术WebRTC的优缺点
良心分享:WebRTC 零基础开发者教程(中文)
开源实时音视频技术WebRTC中RTP/RTCP数据传输协议的应用
基于RTMP数据传输协议的实时流媒体技术研究(论文全文)
声网架构师谈实时音视频云的实现难点(视频采访)
浅谈开发实时视频直播平台的技术要点
还在靠“喂喂喂”测试实时语音通话质量?本文教你科学的评测方法!
实现延迟低于500毫秒的1080P实时音视频直播的实践分享
移动端实时视频直播技术实践:如何做到实时秒开、流畅不卡
如何用最简单的方法测试你的实时音视频方案
技术揭秘:支持百万级粉丝互动的Facebook实时视频直播
简述实时音视频聊天中端到端加密(E2EE)的工作原理
移动端实时音视频直播技术详解(一):开篇
移动端实时音视频直播技术详解(二):采集
移动端实时音视频直播技术详解(三):处理
移动端实时音视频直播技术详解(四):编码和封装
移动端实时音视频直播技术详解(五):推流和传输
移动端实时音视频直播技术详解(六):延迟优化
理论联系实际:实现一个简单地基于HTML5的实时视频直播
IM实时音视频聊天时的回声消除技术详解
浅谈实时音视频直播中直接影响用户体验的几项关键技术指标
如何优化传输机制来实现实时音视频的超低延迟?
首次披露:快手是如何做到百万观众同场看直播仍能秒开且不卡顿的?
实时通信RTC技术栈之:视频编解码
开源实时音视频技术WebRTC在Windows下的简明编译教程
Android直播入门实践:动手搭建一套简单的直播系统
>> 更多同类文章 ……

[9] IM开发综合文章:
移动端IM中大规模群消息的推送如何保证效率、实时性?
移动端IM开发需要面对的技术问题
开发IM是自己设计协议用字节流好还是字符流好?
请问有人知道语音留言聊天的主流实现方式吗?
IM消息送达保证机制实现(一):保证在线实时消息的可靠投递
IM消息送达保证机制实现(二):保证离线消息的可靠投递
如何保证IM实时消息的“时序性”与“一致性”?
一个低成本确保IM消息时序的方法探讨
IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?
IM群聊消息如此复杂,如何保证不丢不重?
谈谈移动端 IM 开发中登录请求的优化
移动端IM登录时拉取数据如何作到省流量?
浅谈移动端IM的多点登陆和消息漫游原理
完全自已开发的IM该如何设计“失败重试”机制?
通俗易懂:基于集群的移动端IM接入层负载均衡方案分享
微信对网络影响的技术试验及分析(论文全文)
即时通讯系统的原理、技术和应用(技术论文)
开源IM工程“蘑菇街TeamTalk”的现状:一场有始无终的开源秀
QQ音乐团队分享:Android中的图片压缩技术详解(上篇)
QQ音乐团队分享:Android中的图片压缩技术详解(下篇)
腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率
腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(上篇)
腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(下篇)
如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源
基于社交网络的Yelp是如何实现海量用户图片的无损压缩的?
>> 更多同类文章 ……

[10] 开源移动端IM技术框架资料:
开源移动端IM技术框架MobileIMSDK:快速入门
开源移动端IM技术框架MobileIMSDK:常见问题解答
开源移动端IM技术框架MobileIMSDK:压力测试报告
>> 更多同类文章 ……

[11] 有关推送技术的文章:
iOS的推送服务APNs详解:设计思路、技术原理及缺陷等
信鸽团队原创:一起走过 iOS10 上消息推送(APNS)的坑
Android端消息推送总结:实现原理、心跳保活、遇到的问题等
扫盲贴:认识MQTT通信协议
一个基于MQTT通信协议的完整Android推送Demo
IBM技术经理访谈:MQTT协议的制定历程、发展现状等
求教android消息推送:GCM、XMPP、MQTT三种方案的优劣
移动端实时消息推送技术浅析
扫盲贴:浅谈iOS和Android后台实时消息推送的原理和区别
绝对干货:基于Netty实现海量接入的推送服务技术要点
移动端IM实践:谷歌消息推送服务(GCM)研究(来自微信)
为何微信、QQ这样的IM工具不使用GCM服务推送消息?
极光推送系统大规模高并发架构的技术实践分享
从HTTP到MQTT:一个基于位置服务的APP数据通信实践概述
魅族2500万长连接的实时消息推送架构的技术实践分享
专访魅族架构师:海量长连接的实时消息推送系统的心得体会
深入的聊聊Android消息推送这件小事
基于WebSocket实现Hybrid移动应用的消息推送实践(含代码示例)
一个基于长连接的安全可扩展的订阅/推送服务实现思路
实践分享:如何构建一套高可用的移动端消息推送系统?
Go语言构建千万级在线的高并发消息推送系统实践(来自360公司)
腾讯信鸽技术分享:百亿级实时消息推送的实战经验
百万在线的美拍直播弹幕系统的实时推送技术实践之路
>> 更多同类文章 ……

[12] 更多即时通讯技术好文分类:
http://www.52im.net/forum.php?mod=collection&op=all

(原文链接:http://www.infoq.com/cn/articles/netty-high-performance/

即时通讯网 - 即时通讯开发者社区! 来源: - 即时通讯开发者社区!

标签:Netty
上一篇:详解Netty的优雅退出机制和原理下一篇:《TCP/IP详解》学习笔记(九):TCP 协议概述

本帖已收录至以下技术专辑

推荐方案
评论 1
李林峰写的 Netty权威指南 看过了,跟国外同类书籍相比差的不是一点半点,不过好待有这样的国人在研究和分享这一块儿,也算是同行的福利了,支持李林峰
打赏楼主 ×
使用微信打赏! 使用支付宝打赏!

返回顶部