请选择 进入手机版 | 继续访问电脑版

默认
打赏 发表评论 75
想开发IM:买成品怕坑?租第3方怕贵?找开源自已撸?尽量别走弯路了... 找站长给点建议
网络编程懒人入门(一):快速理解网络通信协议(上篇)
微信扫一扫关注!

原作者:阮一峰(ruanyifeng.com),本文由即时通讯网重新整理发布,感谢原作者的无私分享。


1、写在前面


论坛和群里常会有技术同行打算自已开发IM或者消息推送系统,很多时候连基本的网络编程理论(如网络协议等)都不了解,就贸然定方案、写代码,显得非常盲目且充满技术风险。

即时通讯网论坛里精心整理了《[通俗易懂]深入理解TCP协议》、《不为人知的网络编程》、《P2P技术详解》、《高性能网络编程》这几个网络编程的系列文章,甚至还有图文并貌+实战代码的《NIO框架入门》等等。资料虽好,无奈很多同行或许是时间紧迫,也或许是心态浮躁,反正就是没办法静下心来仔细研读,导致错过了很多必须掌握的网络编程知识基础(如果您正打算从零开发移动端IM,则建议您从此文开始《新手入门一篇就够:从零开发移动端IM)。

本次《网络编程懒人入门》系列文章(共3篇),将为大家(尤其是上面说的浮躁的开发者同行)提供懒人快速入门,希望在你没办法耐心读完上面的几个系列文章(但还是强烈建议优先去读一读)的情况还能对基本的网络编程知识有所了解和掌握,从而对您的IM系统或消息推系统的技术选型、方案制定、代码编写起到理论支撑作用。

本文将从网络通信协议讲起,懒人们,动起来^_^ !

2、正文引言


我们每天使用互联网,你是否想过,它是如何实现的?

全世界几十亿台电脑,连接在一起,两两通信。上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗?

互联网的核心是一系列协议,总称为"互联网协议"(Internet Protocol Suite)。它们对电脑如何连接和组网,做出了详尽的规定。理解了这些协议,就理解了互联网的原理。

下面就是我的学习笔记。因为这些协议实在太复杂、太庞大,我想整理一个简洁的框架,帮助自己从总体上把握它们。为了保证简单易懂,我做了大量的简化,有些地方并不全面和精确,但是应该能够说清楚互联网的原理。

另外,如果您很好奇承载这些网络协议的物理设备是怎么工作的,可以先看看《网络编程懒人入门(六):史上最通俗的集线器、交换机、路由器功能原理入门》。

3、系列文章


本文是系列文章中的第1篇,本系列文章的大纲如下:


本站的《脑残式网络编程入门》也适合入门学习,本系列大纲如下:


如果您觉得本系列文章过于基础,您可直接阅读《不为人知的网络编程》系列文章,该系列目录如下:


关于移动端网络特性及优化手段的总结性文章请见:


4、参考资料


TCP/IP详解 - 第11章·UDP:用户数据报协议
TCP/IP详解 - 第17章·TCP:传输控制协议
TCP/IP详解 - 第18章·TCP连接的建立与终止
TCP/IP详解 - 第21章·TCP的超时与重传
通俗易懂-深入理解TCP协议(上):理论基础
通俗易懂-深入理解TCP协议(下):RTT、滑动窗口、拥塞处理
理论经典:TCP协议的3次握手与4次挥手过程详解
理论联系实际:Wireshark抓包分析TCP 3次握手、4次挥手过程
计算机网络通讯协议关系图(中文珍藏版)
高性能网络编程(一):单台服务器并发TCP连接数到底可以有多少
高性能网络编程(二):上一个10年,著名的C10K并发连接问题
高性能网络编程(三):下一个10年,是时候考虑C10M并发问题了
高性能网络编程(四):从C10K到C10M高性能网络应用的理论探索
简述传输层协议TCP和UDP的区别
为什么QQ用的是UDP协议而不是TCP协议?
移动端即时通讯协议选择:UDP还是TCP?

5、内容概述


5.1五层模型


互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。

如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释:
1.jpg

如上图所示,最底下的一层叫做"实体层"(Physical Layer),最上面的一层叫做"应用层"(Application Layer),中间的三层(自下而上)分别是"链接层"(Link Layer)、"网络层"(Network Layer)和"传输层"(Transport Layer)。越下面的层,越靠近硬件;越上面的层,越靠近用户。

它们叫什么名字,其实并不重要。只需要知道,互联网分成若干层就可以了。

5.2层与协议


每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。大家都遵守的规则,就叫做"协议"(protocol)。

互联网的每一层,都定义了很多协议。这些协议的总称,就叫做"互联网协议"(Internet Protocol Suite)。它们是互联网的核心,下面介绍每一层的功能,主要就是介绍每一层的主要协议。

6、实体层


我们从最底下的一层开始。

电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。

2.jpg

这就叫做"实体层",它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

7、链接层


7.1定义


单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?

这就是"链接层"的功能,它在"实体层"的上方,确定了0和1的分组方式。

7.2以太网协议


早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做"以太网"(Ethernet)的协议,占据了主导地位。

以太网规定,一组电信号构成一个数据包,叫做"帧"(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。

3.jpg

"标头"包含数据包的一些说明项,比如发送者、接受者、数据类型等等;"数据"则是数据包的具体内容。

"标头"的长度,固定为18字节。"数据"的长度,最短为46字节,最长为1500字节。因此,整个"帧"最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。

7.3MAC地址


上面提到,以太网数据包的"标头",包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?

以太网规定,连入网络的所有设备,都必须具有"网卡"接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。

4.jpg

每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。

5.jpg

前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

7.4广播


定义地址只是第一步,后面还有更多的步骤:

  • 1)首先:一块网卡怎么会知道另一块网卡的MAC地址?
    回答是有一种ARP协议,可以解决这个问题。这个留到后面介绍,这里只需要知道,以太网数据包必须知道接收方的MAC地址,然后才能发送。
  • 2)其次:就算有了MAC地址,系统怎样才能把数据包准确送到接收方?
    回答是以太网采用了一种很"原始"的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机发送,让每台计算机自己判断,是否为接收方。

6.jpg

上图中,1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的"标头",找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做"广播"(broadcasting)。

有了数据包的定义、网卡的MAC地址、广播的发送方式,"链接层"就可以在多台计算机之间传送数据了。

8、网络层


8.1网络层的由来


以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。

但是,这样做有一个重大的缺点。以太网采用广播方式发送数据包,所有成员人手一"包",不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是不合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。

互联网是无数子网络共同组成的一个巨型网络,很像想象上海和洛杉矶的电脑会在同一个子网络,这几乎是不可能的。

7.jpg

因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用"路由"方式发送。("路由"的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。

这就导致了"网络层"的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做"网络地址",简称"网址"。

于是,"网络层"出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。

网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

8.2IP协议


规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。目前,广泛采用的是IP协议第四版,简称IPv4。
IPv4这个版本规定,网络地址由32个二进制位组成:
8.jpg

习惯上,我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255

互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。比如,IP地址172.16.254.1,这是一个32位的地址,假定它的网络部分是前24位(172.16.254),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说172.16.254.2应该与172.16.254.1处在同一个子网络。

但是,问题在于单单从IP地址,我们无法判断网络部分。还是以172.16.254.1为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。

那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数"子网掩码"(subnet mask)。

所谓"子网掩码",就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0

知道"子网掩码",我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

比如,已知IP地址172.16.254.1和172.16.254.233的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,结果都是172.16.254.0,因此它们在同一个子网络。

总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

8.3IP数据包


根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?

回答是不需要,我们可以把IP数据包直接放进以太网数据包的"数据"部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。

具体来说,IP数据包也分为"标头"和"数据"两个部分:
9.jpg

"标头"部分主要包括版本、长度、IP地址等信息,"数据"部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样:
10.jpg

IP数据包的"标头"部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。因此,理论上,一个IP数据包的"数据"部分,最长为65,515字节。前面说过,以太网数据包的"数据"部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。

8.4ARP协议


关于"网络层",还有最后一点需要说明。因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的(后文会解释),但是我们不知道它的MAC地址。

所以,我们需要一种机制,能够从IP地址得到MAC地址。

这里又可以分成两种情况:

  • 1)第一种情况:如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的"网关"(gateway),让网关去处理;
  • 2)第二种情况:如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个"广播"地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。

总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。

9、传输层


9.1传输层的由来


有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。

接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?

也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做"端口"(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

"端口"是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。

"传输层"的功能,就是建立"端口到端口"的通信。相比之下,"网络层"的功能是建立"主机到主机"的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把主机+端口,叫做"套接字"(socket)。有了它,就可以进行网络应用程序开发了。

9.2UDP协议


现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。

UDP数据包,也是由"标头"和"数据"两部分组成:
11.jpg


"标头"部分主要定义了发出端口和接收端口,"数据"部分就是具体的内容。然后,把整个UDP数据包放入IP数据包的"数据"部分,而前面说过,IP数据包又是放在以太网数据包之中的,所以整个以太网数据包现在变成了下面这样:
12.jpg

UDP数据包非常简单,"标头"部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

9.3TCP协议


UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。

因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。

TCP数据包和UDP数据包一样,都是内嵌在IP数据包的"数据"部分。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

10、应用层


应用程序收到"传输层"的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。"应用层"的作用,就是规定应用程序的数据格式。

举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了"应用层"。这是最高的一层,直接面对用户。它的数据就放在TCP数据包的"数据"部分。

因此,现在的以太网的数据包就变成下面这样:
13.jpg

11、本文小结


至此,整个互联网的五层结构,自下而上全部讲完了。这是从系统的角度,解释互联网是如何构成的。下一篇《网络编程懒人入门(二):快速理解网络通信协议(下篇)》,我反过来,从用户的角度,自上而下看看这个结构是如何发挥作用,完成一次网络数据交换的。敬请期待!

(原文链接:点此进入,有改动)

附录:更多网络编程资料


技术往事:改变世界的TCP/IP协议(珍贵多图、手机慎点)
UDP中一个包的大小最大能多大?
Java新一代网络编程模型AIO原理及Linux系统AIO介绍
NIO框架入门(一):服务端基于Netty4的UDP双向通信Demo演示
NIO框架入门(二):服务端基于MINA2的UDP双向通信Demo演示
NIO框架入门(三):iOS与MINA2、Netty4的跨平台UDP双向通信实战
NIO框架入门(四):Android与MINA2、Netty4的跨平台UDP双向通信实战
P2P技术详解(一):NAT详解——详细原理、P2P简介
P2P技术详解(二):P2P中的NAT穿越(打洞)方案详解
P2P技术详解(三):P2P技术之STUN、TURN、ICE详解
通俗易懂:快速理解P2P技术中的NAT穿透原理
>> 更多同类文章 ……

即时通讯网 - 即时通讯开发者社区! 来源: - 即时通讯开发者社区!

上一篇:iOS下用UDP传大文件数据错乱的问题,跪求解答?下一篇:网络编程懒人入门(二):快速理解网络通信协议(下篇)

本帖已收录至以下技术专辑

推荐方案
评论 75
好文,收藏先
签名: 该会员没有填写今日想说内容.
期待下一篇
引用:yangb 发表于 2017-10-10 16:47
期待下一篇

下一篇明天发布!
看完有收获,谢谢!
楼主实在是写的太好了,为您的贡献精神点赞!
签名: 学习学习
给楼主大佬递茶。
之前看了《新手入门一篇就够:从零开发移动端IM》,根据里面的推荐,去看了《TCP/IP详解》这书,第一章就懵逼了。感谢大佬这篇文章,让我豁然开朗,原来是这样。。。
消化下,然后看下一章
引用:给IM大佬递茶 发表于 2017-11-10 09:27
给楼主大佬递茶。
之前看了《新手入门一篇就够:从零开发移动端IM》,根据里面的推荐,去看了《TCP/IP详解 ...

是的,论坛资料很多,选适合自已看的着手就行
正在学习网络编程,之前一直有看网络的七层模型,不是很理解,这篇文章一下让我豁然开朗啊,谢谢大神
引用:lanyueboyu 发表于 2017-11-20 17:24
正在学习网络编程,之前一直有看网络的七层模型,不是很理解,这篇文章一下让我豁然开朗啊,谢谢大神

正想加深学习一下网络编程就看到你的文章,真是时候啊!
签名: 努力......
学习了
签名: 法规的非官方个
“"标头"的长度,固定为18字节” 。 以太网表头不是14个字节??? 源mac + 目标Mac + type = 6 + 6 + 2=14为什么文中说是18个,加上PCS?
引用:lowett 发表于 2018-07-05 21:45
“"标头"的长度,固定为18字节” 。 以太网表头不是14个字节??? 源mac + 目标Mac + type = 6 + 6 + 2=14 ...

作者应该是笔误,确实应该是14个字节。
讲得非常清晰。把每一层的功能都描述得很到位。
物理层:电路信号的控制、电压范围控制等;
链路层:负责编解码电路信号,封装成帧,头部主要有mac地址;
网络层:在mac地址基础上,增加IP地址,和简单的校验机制;
传输层:用户做传输控制,对应有端口,传输层的主要协议有TCP和UDP;
应用层:负责与用户交互。
引用:Focus 发表于 2018-07-10 15:41
讲得非常清晰。把每一层的功能都描述得很到位。
物理层:电路信号的控制、电压范围控制等;
链路层:负责 ...

总结的不错!
谢谢大佬讲解,
签名: 后悔没提前发现这个网站
一层层包含,上面的不影响下面的层,以太网+IP+TCP标头+应用层数据包
签名: 大家早上好,鸿蒙系统
引用:yupen110 发表于 2018-07-30 17:38
一层层包含,上面的不影响下面的层,以太网+IP+TCP标头+应用层数据包

值得学习
签名: 开始学习即时通讯
打赏楼主 ×
使用微信打赏! 使用支付宝打赏!

返回顶部